ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Swarn S. Kalsi
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1703-1707
Magnet Engineering | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40006
Articles are hosted by Taylor and Francis Online.
A goal of minimum cost was pursued very strongly by the mirror project team. The team has concluded that a more compact and cost-effective end cell magnet system could be achieved by employing octopole magnets. Feasibility of an octopole end cell magnet design was studied as part of FY84 Fusion Power Demonstration (FPD) work under the direction of Lawrence Livermore National Laboratory (LLNL). This paper describes sizing and design studies of a superconducting octopole magnet. Magnetic field requirements were supplied by LLNL for the end cell region. Based on these requirements, the Fusion Engineering Design Center (FEDC) synthesized an end cell magnet system. The final end cell magnet system at the conclusion of the FPD study consisted of a 24-T choke coil, a small octopole, a large octopole, and a mirror circular coil. Many octopole magnet configurations were studied, but the final large octopole design consisted of four saddle coils. The saddle-shaped coils were preferred over other shapes for ease of fabrication. This paper describes the scoping design study of the saddle coil winding and its support structure. The support concept for interconnecting the four saddle coils (to form the octopole) is described. An octopole consisting of saddle coils can be fabricated using current conductors and coil winding technology.