ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sebahattin Ünalan
Fusion Science and Technology | Volume 33 | Number 4 | July 1998 | Pages 398-417
Technical Paper | doi.org/10.13182/FST98-A40
Articles are hosted by Taylor and Francis Online.
The possibility of Canada deuterium uranium reactor (CANDU) spent-fuel rejuvenation in deuterium-tritium (D-T)-driven hybrid reactors having 17.8 cm of fissile zone thickness is investigated for various plasma chamber dimensions (DR = 18.7, 118.7, 218.7, and 418.7 cm) with a linear fusion neutron source (plasma dimension is assumed as DR/2) under different first-wall loads (Pw = 2, 4, 6, 8, and 10 MW/m2). The behavior of the spent fuel is observed during 36 months for discrete time intervals of t = 15 days and by a plant factor of 75%. The fissile fuel zone is considered to be cooled with three different coolants: gas (He or CO2), Flibe (Li2BeF4), and natural Li.As a result of the calculation, in the case of the first-wall load and the plasma chamber dimensions being selected high, although the first-wall material had been damaged considerably by the high neutron flux (displacements per atom > 100 and He > 500 parts per million for Pw > 2 MW/m2 over 3 yr of operation) and the maximum temperature in the centerline of the fuel rod (Tm) had reached the melting point (Tm > 2600°C for Pw > 6 MW/m2 and DR > 1 m), it was observed that the neutronic performance of the hybrid reactor improved unnegligibly. For DR = 18.7 cm, at the beginning of rejuvenation, the tritium breeding ratio values were 1.18, 0.85, and 1.26 for gas, Flibe, and natural Li, respectively, and by the end of the rejuvenation had increased to 1.26, 0.93, and 1.32 for 2 MW/m2 and to 1.60, 1.28, and 1.58 for 10 MW/m2. In addition, the blanket energy multiplication M increased to 5.47, 4.92, and 5.02 for 2 MW/m2 and to 8.89, 9.32, and 7.58 for 10 MW/m2 from 4.64, 3.90, and 4.37, respectively. Only for Flibe, when the DR value is preferred at ~1 m, the M values increased to 5.82 and to 15.0 from 3.92 for 2 and 10 MW/m2, respectively. Under the same conditions, the average cumulative fissile fuel enrichment (CFFE) values indicating the rejuvenation performance increased to 1.67, 2.13, and 1.57% for 2 MW/m2 and to 5.78, 7.69, and 5.39% for 10 MW/m2 from 0.418%, respectively. For Flibe coolant, while the same CFFE value is 11.2% at DR = ~1 m, it is 11.4% at DR = ~4 m. The contribution of a large plasma chamber (DR > 1 m) to neutronic performance can be neglected. The best rejuvenation performance and neutron economy have been shown by Flibe. However, Flibe has shown a bad capability until the rejuvenation time in terms of tritium breeding. For Flibe, to breed enough tritium, the values of the first-wall load and required rejuvenation time must be larger than 6 MW/m2 and 2 yr, respectively.For all cases, the denatured character of the initial fuel charge remains denatured for all investigated cases over the whole plant operation period in a hybrid reactor although the Pu quality increases continuously during the rejuvenation process. In addition, our calculations have proven that the effects of the important fission products (135Xe, 149Sm) and plasma densities up to 1021 (D + T)/cm3 can be neglected for the neutronic performance of the hybrid reactor, which rejuvenates CANDU spent fuel.