ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Canada begins regulatory approval process for spent fuel repository
Canada has formally initiated the regulatory process of licensing its proposed deep geological repository for spent nuclear fuel, with the country’s Nuclear Waste Management Organization (NWMO) announcing that it has submitted an initial project description to the Canadian government.
According to the NWMO, the initial project description is a foundational document, detailing the repository’s purpose, need, and expected benefits and explaining how the project will be implemented. It also provides a preliminary assessment of potential impacts and describes measures to avoid or mitigate them. The NWMO is the not-for-profit organization responsible for managing Canada’s nuclear waste.
C. G. Bathke, R. A. Krakowski, R. L. Miller
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1616-1621
Alternative Concept | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39991
Articles are hosted by Taylor and Francis Online.
Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line tracings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented.