ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. S. Massey, R. G. Watt, P. G. Weber, G. A. Wurden, D. A. Baker, C. J. Buchenauer, L. C. Burkhardt, T. Cayton, J. N. DiMarco, J. N. Downing, R. M. Erickson, R. F. Gribble, A. Haberstich, R. B. Howell, J. C. Ingraham, E. M. Little, G. Miller, C. P. Munson, J. A. Phillips, M. M. Pickrell, K. F. Schoenberg, A. E. Schofield, D. M. Weldon
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1571-1580
Alternative Concept | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39985
Articles are hosted by Taylor and Francis Online.
The present status of research on the ZT-40M Reversed-Field Pinch (RFP) will be described. RFP discharges have been sustained for times (27 ms) >> the classical resistive diffusion time, implying the existence of a flux-sustainment mechanism (“dynamo”). This mechanism opens the possibility for a steady-state RFP reactor utilizing a unique form of non-inductive current drive. Te > 500 eV has been obtained for 400 kA aischarges with ∼ 4 × 1019 m−3. Total energy confinement time τE has reached 0.7 ms with a Lawson parameter of 5 × 1016 m−3 s for discharges with = 8×1019 m−3 and Te = 330 eV at a plasma current of 330 kA and 0.33 T total confining field at the wall. Reactor-like βθ ∼ 10–20% is routinely obtained for plasma currents from 60–400 kA (β ∼ βθ/2). Scaling of τE ∼ I(2.2±0.4) is found, more than adequate for a compact RFP reactor.