ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. S. Massey, R. G. Watt, P. G. Weber, G. A. Wurden, D. A. Baker, C. J. Buchenauer, L. C. Burkhardt, T. Cayton, J. N. DiMarco, J. N. Downing, R. M. Erickson, R. F. Gribble, A. Haberstich, R. B. Howell, J. C. Ingraham, E. M. Little, G. Miller, C. P. Munson, J. A. Phillips, M. M. Pickrell, K. F. Schoenberg, A. E. Schofield, D. M. Weldon
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1571-1580
Alternative Concept | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39985
Articles are hosted by Taylor and Francis Online.
The present status of research on the ZT-40M Reversed-Field Pinch (RFP) will be described. RFP discharges have been sustained for times (27 ms) >> the classical resistive diffusion time, implying the existence of a flux-sustainment mechanism (“dynamo”). This mechanism opens the possibility for a steady-state RFP reactor utilizing a unique form of non-inductive current drive. Te > 500 eV has been obtained for 400 kA aischarges with ∼ 4 × 1019 m−3. Total energy confinement time τE has reached 0.7 ms with a Lawson parameter of 5 × 1016 m−3 s for discharges with = 8×1019 m−3 and Te = 330 eV at a plasma current of 330 kA and 0.33 T total confining field at the wall. Reactor-like βθ ∼ 10–20% is routinely obtained for plasma currents from 60–400 kA (β ∼ βθ/2). Scaling of τE ∼ I(2.2±0.4) is found, more than adequate for a compact RFP reactor.