ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Steven E. Jones
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1511-1521
Muon-Catalyzed Fusion Engineering Review | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39980
Articles are hosted by Taylor and Francis Online.
Negative muons (elementary particles having a mean life of 2.2 microseconds) have been used to induce nuclear fusion reactions of the type: Behaving like a very heavy electron, a muon forms a tightly bound deuteron-triton-muon (dtµ) molecule. Fusion then ensues, typically in picoseconds, as the nuclei tunnel through the Coulomb repulsive barrier. Up to 160 fusions per muon (average) have been observed in cold deuterium-tritium mixtures. Thus, the process may be called muon-catalyzed fusion, or “cold” fusion. The fusion energy thus released is twenty times the total energy of the muon driving the fusion reaction. However, the energy needed to produce the muon catalysts is currently much larger than the fusion energy released. In preparing for muon-catalyzed fusion experiments, a number of engineering challenges were encountered and successfully resolved. Similar challenges would be faced in a (hypothetical) cold fusion reactor. High-temperature plasmas and many associated difficulties are of course circumvented. However, the gaseous d-t fuel must be contained at elevated temperatures (∼400°C) and near-liquid density. (Experiments show that increasing either parameter enhances the fusion yield.) This translates into high gas pressures (∼108Pa) and a new class of engineering challenges. Material strength and fabricability, hydrogen permeation and material embrittlement, tritium inventory and safety concerns, muon beam scattering and degradation, and reaction vessel geometries are among critical engineering considerations.