ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Steven E. Jones
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1511-1521
Muon-Catalyzed Fusion Engineering Review | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39980
Articles are hosted by Taylor and Francis Online.
Negative muons (elementary particles having a mean life of 2.2 microseconds) have been used to induce nuclear fusion reactions of the type: Behaving like a very heavy electron, a muon forms a tightly bound deuteron-triton-muon (dtµ) molecule. Fusion then ensues, typically in picoseconds, as the nuclei tunnel through the Coulomb repulsive barrier. Up to 160 fusions per muon (average) have been observed in cold deuterium-tritium mixtures. Thus, the process may be called muon-catalyzed fusion, or “cold” fusion. The fusion energy thus released is twenty times the total energy of the muon driving the fusion reaction. However, the energy needed to produce the muon catalysts is currently much larger than the fusion energy released. In preparing for muon-catalyzed fusion experiments, a number of engineering challenges were encountered and successfully resolved. Similar challenges would be faced in a (hypothetical) cold fusion reactor. High-temperature plasmas and many associated difficulties are of course circumvented. However, the gaseous d-t fuel must be contained at elevated temperatures (∼400°C) and near-liquid density. (Experiments show that increasing either parameter enhances the fusion yield.) This translates into high gas pressures (∼108Pa) and a new class of engineering challenges. Material strength and fabricability, hydrogen permeation and material embrittlement, tritium inventory and safety concerns, muon beam scattering and degradation, and reaction vessel geometries are among critical engineering considerations.