ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. Sugiyama, K. Kanda, S. Iwasaki, M. Nakazawa, H. Hashikura, T. Iguchi, H. Sekimoto, S. Itoh, K. Sumita, A. Takahashi, J. Yamamoto
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1491-1496
Blanket Neutronic | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39977
Articles are hosted by Taylor and Francis Online.
A benchmark experiment on tritium breeding in a lithium sphere of 120-cm diameter has been done using the intense 14-MeV neutron source OKTAVIAN at Osaka University. Radial measurement data on 6Li and 7Li tritium production rates and several activation rates inside the lithium sphere agreed with 1-D transport NITRAN and ANISN calculations to within about 20%. For a more detailed comparison, further corrections are thought to be necessary. The anisotropies of intensity and energy on neutron emission with respect to the deuteron beam axis, and scattering effects of source neutrons by the target assembly must be considered.