ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
E. T. Cheng, R. L. Creedon, G. R. Hopkins, P. Trester, C. P. C. Wong
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1408-1414
Environment and Safety | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39964
Articles are hosted by Taylor and Francis Online.
A preliminary conceptual design study for a very low activation fusion plasma core experimental facility is presented. Low activation is achieved by using only very low activation materials in the inner shield (graphite blocks), vacuum vessel (Al/SiC composite alloy), outer shield (SiC/B4C) and magnets (Aluminum). The mechanical configuration of the vacuum vessel is a water-flooded double-shell. It is capable of carrying 1.5 MN in hoop compression with a reserve factor of two over the equatorial 0.8 m zone during plasma disruption. Hands-on access to the vacuum vessel and auxiliary equipment provide a high degree of operability, maintainability and flexibility in experimental program. Problem areas are in further development of the aluminum alloy and composite materials for the vacuum vessel and in cost reduction of high purity low activation materials.