ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D.L. Henderson, R.R. Peterson, G.A. Moses
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1396-1401
Environment and Safety | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39962
Articles are hosted by Taylor and Francis Online.
Radioactivity and biological dose calculations have been performed for the target chamber of the Target Development Facility (TDF). Two conventional shield designs are considered. One has the target chamber submerged 3 m from the surface of a borated water pool, the other has the chamber surrounded by approximately 250 cm of concrete. The first wall materials, Al-6061 and 2-1/4 Cr-1 Mo steel and the ion beam targets, one made from BeO2 and W and the other from CH2 and Au, are investigated. Shielding designs are presented that reduce the dose from each of these choices of shield, first wall and target material to acceptable levels.