ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
D.L. Henderson, R.R. Peterson, G.A. Moses
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1396-1401
Environment and Safety | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39962
Articles are hosted by Taylor and Francis Online.
Radioactivity and biological dose calculations have been performed for the target chamber of the Target Development Facility (TDF). Two conventional shield designs are considered. One has the target chamber submerged 3 m from the surface of a borated water pool, the other has the chamber surrounded by approximately 250 cm of concrete. The first wall materials, Al-6061 and 2-1/4 Cr-1 Mo steel and the ion beam targets, one made from BeO2 and W and the other from CH2 and Au, are investigated. Shielding designs are presented that reduce the dose from each of these choices of shield, first wall and target material to acceptable levels.