ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. R. Krauss, D. M. Gruen, J. N. Brooks, M. H. Mendelsohn, R. F. Mattas, A. B. DeWald
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1269-1274
Impurity Control and Vacuum Technology | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39942
Articles are hosted by Taylor and Francis Online.
Dilute binary alloys have been discussed previously as a means of producing self-sustaining coatings for fusion applications. The anticipated advantages of such coatings are described in a companion paper.11 Issues addressed in this paper concern experimental observation of the formation of a low-Z coating by solute segregation in a Cu-Li alloy, maintenance of the coating in a sputtering environment, and a comparison of the calculated net erosion for W, Mo, and Cu-Li when used as either the divertor plate or the bottom limiter for INTOR. Auger electron spectroscopy has been used to monitor the surface composition of an alloy consisting of 3.0 at.% Li in Cu while sputtering with 1–3 keV Ar+ or He+ at a flux of 1012 – 1014 cm−2 sec−1 (corresponding to a gross erosion rate of several mm/yr) at temperatures up to 430°C. It is found that the alloy is capable of reproducibly maintaining a complete lithium overlayer. The time-dependent thickness of the overlayer depends strongly on the mass and energy spectrum of the incident particle flux. It has been experimentally demonstrated that a significant fraction of the sputtered lithium is in the form Li+ and is returned to the surface by an electric field such as the sheath potential at the limiter, or a tangential magnetic field such as the toroidal field at the first wall; consequently, the overlayer lifetime is essentially unlimited. The TRIM computer code has been used to calculate the sputtering yield for pure metals and the partial sputtering yields of binary alloy components for various assumed solute concentration profiles. It is found that even with very low-Z coatings, the majority of the sputtered atoms originate in the uppermost atomic layer and that the partial sputtering yield of an alloy component is significantly reduced if that component is excluded from the uppermost atomic layer. It is predicted that the self-sputtering behavior of Cu-Li when used as a limiter or divertor plate will compare very favorably with that of tungsten. Calculations using the REDEP code bear out this expectation. At low plasma edge temperatures (< 50 eV), the net erosion (erosion minus redeposition) due to D,T,He and self-sputtering is nearly zero, while the gross erosion is less than that of Mo, For edge temperatures > 50 eV, W, and Mo are unusable due to self-sputtering. It is calculated that in the intermediate edge temperature regime (50–200 eV), a limiter made of copper with a lithium coating 1.5 monolayers thick would show net growth or erosion of < 3 mm per year. Consequently, Cu-Li alloy may be the only material suitable for use with intermediate plasma edge temperatures.