ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. F. Smith, R. D. Watson, J. B. Whitley, J. M. McDonald
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1174-1183
Beryllium Technology | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39927
Articles are hosted by Taylor and Francis Online.
Materials testing of S-65-B grade beryllium has been conducted in order to evaluate the use of this material for limiter surfaces in the ISX-B and JET tokamaks. Selected thermal and mechanical properties were measured at temperatures up to 700 °C. These measurements revealed that S-65-B has exceptionally high ductility (up to roughly 50% elongation) at temperatures expected in normal operation of a beryllium limiter. Thermal fatigue tests under conditions relevant to limiters in ISX-B and JET were also performed using the Sandia National Laboratories Electron Beam Test System (EBTS). Results from these tests were compared to calculated results based on elastic-plastic finite element stress analyses. It was concluded from these tests and analyses that properly designed beryllium limiters should survive normal operation in ISX-B, JET, and similar devices without serious structural failure. Some degree of surface cracking can be expected, however, unless cyclic plastic deformation at the heated surfaces can be adequately controlled by careful design of the limiter.