ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Calvin Wong, E. F. Plechaty, R. W. Bauer, R. C. Haight, L. F. Hansen, R. J. Howerton, T. T. Komoto, J. D. Lee, S. T. Perkins, B. A Pohl
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1165-1173
Beryllium Technology | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39926
Articles are hosted by Taylor and Francis Online.
Using the Pulsed-Sphere Method, the leakage spectra from hollow Be spheres of 4.5, 13.8 and 19.9 cm thickness have been measured. The predicted copious production of epithermal and thermal neutrons from the 13.8 and 19.9 cm spherical shells has been verified. A quantitative comparison of measured and calculated time-of-arrival count spectra over the energy range from thermal to ∼ 15 MeV indicates that the ENDL-84 library overestimates the leakage spectra between 2 and 10 MeV and in the epithermal and thermal energy regions. In the remaining regions, the leakage spectra are underestimated. Because of the above compensation the inferred leakage multiplication for the 19.9 cm Be is ∼ 3% higher than calculations. In the case of the 13.8 cm Be, the compensation is less exact and the inferred leakage multiplication is ∼ 9% higher than calculations.