ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
P. Gierszewski (UCLA/CFFTP), M. Abdou (UCLA), G. Bell (TRW), J. Blanchard (UCLA), M. Billone (ANL), J. Garner (TRW), H. Madarame (UCLA/U. Tokyo), G. Orient (UCLA) K. Shin (UCLA/U. Kyoto), K. Taghavi (UCLA), M. Tillack (UCLA)
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1100-1108
Nuclear Technology Development Issue and Need (Finesse) | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39918
Articles are hosted by Taylor and Francis Online.
For integrated testing of fusion nuclear components, it is likely that the test device parameters will not match the device parameters of a full scale fusion reactor because of cost constraints. This will result in changes in the behavior of the test module and limit the ability of the test to resolve key nuclear issues. However, it may be possible to modify the test module in order to retain the important aspects of the issues over a range of test device parameters. In order to understand and quantify this range and set requirements for blanket testing, analyses of several aspects of blanket operation were performed. The results suggest that a useful integrated test device should have at least 1 MW/m2 neutron wall load, 0.2 MW/m2 surface heat flux, 20% availability, 500 s burn length, and 0.5 m2 by 0.3 m per test module.