ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
P. Gierszewski (UCLA/CFFTP), M. Abdou (UCLA), G. Bell (TRW), J. Blanchard (UCLA), M. Billone (ANL), J. Garner (TRW), H. Madarame (UCLA/U. Tokyo), G. Orient (UCLA) K. Shin (UCLA/U. Kyoto), K. Taghavi (UCLA), M. Tillack (UCLA)
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1100-1108
Nuclear Technology Development Issue and Need (Finesse) | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39918
Articles are hosted by Taylor and Francis Online.
For integrated testing of fusion nuclear components, it is likely that the test device parameters will not match the device parameters of a full scale fusion reactor because of cost constraints. This will result in changes in the behavior of the test module and limit the ability of the test to resolve key nuclear issues. However, it may be possible to modify the test module in order to retain the important aspects of the issues over a range of test device parameters. In order to understand and quantify this range and set requirements for blanket testing, analyses of several aspects of blanket operation were performed. The results suggest that a useful integrated test device should have at least 1 MW/m2 neutron wall load, 0.2 MW/m2 surface heat flux, 20% availability, 500 s burn length, and 0.5 m2 by 0.3 m per test module.