ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
P.G. Sedano, J.M. Perlado
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1067-1071
Fusion Breeder | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39914
Articles are hosted by Taylor and Francis Online.
Several neutronic calculations have been made for a specific hybrid blanket design in order to evaluate the capability that a fissile zone offers to improve the tritium or fissile fuel production and the energy gain of a fusion blanket. Studies with different fissile zone thickness show the usefulness of thin fissile zones to get high tritium breeding rates. Better total material (tritium plus fissile) production requires thicker fissile zones. Comparisons have been made between the materials neutronic damage expected in a pure fusion blanket and in a hybrid one, with greater energy to damage ratios obtained for the hybrid. Also, greater energy and damage rates are obtained for harder spectra (more 14 MeV neutrons in source) because of the higher potential of 14 MeV neutrons to produce fission in the hybrid blanket.