ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
A. Kumar, C. Sahraoui, S. Azam
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1315-1323
Blanket Nucleonics Experiment | doi.org/10.13182/FST89-A39871
Articles are hosted by Taylor and Francis Online.
Under the ongoing experimental program of fusion neutronics at the LOTUS facility, a number of activation and tritium breeding measurements were recently completed. The presence of the Lithium Blanket Module (LBM) made a number of measurements also possible in it alone and in a number of more complex assemblies, incorporating it as one of the components. The foil activations were done in the following assemblies: (a) 6, 12 and 18 cm thick single Be slabs, (b) 5, 10 and 15 cm thick Pb slabs, (c) 27.7cm thick ThO2 slab, (d) 27.7cm ThO2 + 80cm thick LBM, (e) 5cm Pb + 27.7cm ThO2 + LBM, (f) 6cm Be + 27.7cm ThO2 + LBM. Only five activation reactions were measured : 90Zr(n,2n), 58Ni(n,2n), 93Nb(n,2n), 58Ni(n,p) and 115In(n,n′). The tritium breeding measurements were conducted in three assemblies : (i) LBM, (ii) 5cm Pb + LBM, (iii) 6cm Be + LBM. Both axial and off-axis measurements were made. All the experiments have been analyzed using the two dimensional discrete ordinates code DOT3.5 coupled to the first collision source evaluator GRTUNCL. The agreement between the measured and computed reaction rates is better than 10% for ThO2; it is not so good for others.