ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Anil Kumar, Yoichi Watanabe, Mahmoud Z. Youssef, Mohamed A. Abdou
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1309-1314
Blanket Nucleonics Experiment | doi.org/10.13182/FST89-A39870
Articles are hosted by Taylor and Francis Online.
Phase IIC of the experimental program is to begin in fall of 1988. An extensive pre-analysis has been carried out to select the experimental configurations. The investigations were confined to looking at the effect of (i) multi-layer arrangement of Be multiplier, (ii) the presence of contiguous layers of structure and coolant, (iii) the introduction of protective graphite armor in front of the first wall, on tritium production rate (TPR) in a Li2O assembly. The basic materials and geometrical structure of the assembly, are derived from that of the Phase IIA. The structure is simulated by stainless steel (SS) and the coolant is either polyethylene (PE) or water. Generally, the heterogeneities strongly distort the local T6 and T7 distributions; their effect on global TPR is less marked. One of the two selected configurations has Be, in edge-on layered arrangement with Li2O, as multiplier. In the second configuration, three coolant channels (SS+PE) will be incorporated to simulate structural heterogeneity.