ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
M.Z. Youssef, Y. Watanabe, M. Abdou, M. Nakagawa, T. Mori, K. Kosako, T. Nakamura
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1299-1308
Blanket Nucleonics Experiment | doi.org/10.13182/FST89-A39869
Articles are hosted by Taylor and Francis Online.
Several fusion-oriented integral experiments were performed in Phase II of the U.S./JAERI Collaborative Program on Fusion Neutronics where the geometrical configurations and source condition closely simulate the incident spectrum in fusion reactors. The main objective of the program is to estimate the uncertainties involved in predicting tritium breeding rate in Li2O and other neutronics parameters in fusion blankets that include engineering features (i.e., first wall, multiplier). In Phase II, the Li2O test assembly is placed on one end of a Li2CO3 enclosure that houses the D-T neutron source. Predicted local and integrated tritium production rates (TPR) from 6Li(T6), 7Li(T7) and natural lithium (TN) were compared to measurements in various configurations that included reference, first wall and beryllium multiplier experiments (Phase IIA) in addition to repeating these experiments with a FW/Be layer covering the interior surface of the Li2CO3 enclosure (Phase IIB). Other neutronics parameters that included source characterization by foil measurements, in-system reaction rates, and in-system spectrum measurements were also analyzed. The analyses were carried out independently by both parties using various 3-D Monte Carlo codes and 2-D discrete ordinates codes and data libraries. The results of the analyses are reported in this paper with emphasis placed on the impact of the beryllium data on the discrepancies found between predictions and measurements.