ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Y. Oyama, S. Yamaguchi, K. Tusda, Y. Ikeda, C. Konno, H. Maekawa, T. Nakamura, K. G. Porges, E. F. Bennett, R. F. Mattas
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1293-1298
Blanket Nucleonics Experiment | doi.org/10.13182/FST89-A39868
Articles are hosted by Taylor and Francis Online.
As a part of the Phase-II experimental series of JAERI/USDOE collaborative program on fusion blanket neutronics, the phase-IIB experiment has been performed. The experiment provides information of neutron multiplication and reflection by the inner berryllium layer in a full-coverage blanket geometry. The measurements were carried out at the positions in the test zone on tritium production rate (TPR) using various methods, on reaction rate using foil activation technique and on neutron energy spectrum using NE213 and gas proportional counters. The experimental results showed that the effect of the full-coverage beryllium was a 10% increase for T7 (TPR for 7Li) and a factor of 2–5 increase for T6 (TPR for 6Li). The increase of the integrated TPR for natural lithium (Tn) in the test zone due to the inner beryllium layer was above 60% compared to the non-beryllium system in the Phase-II geometry.