ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
A. E. Dabiri
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1275-1280
Commercial Reactors, Economics and Power Conversion | doi.org/10.13182/FST89-A39865
Articles are hosted by Taylor and Francis Online.
Various energy conversion systems have been reviewed in order to select an efficient power cycle to be compatible with the fusion reactor requirements. The power cycles were selected for a toroidal confinement system with D-T and D-D fuel cycles and a tandem mirror reactor (TMR) with D-3He fuel cycle. Reversed Field Pinch Reactor (RFPR) was selected as an example of a toroidal confinement system with D-T fuel cycle since there has recently been a comprehensive design study for it. Tokamak was selected as an example of a toroidal confinement system with D-D fuel cycle. Tandem mirror reactor was chosen as an example of confinement for D-3He fuel cycle. The steam cycle was found to be most suitable for the RFP and Tokamak reactors while a combination of direct energy conversion system and steam cycle was found to be most suitable for D-3He tandem mirror reactor.