ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Brent L. Rice, Theodore A. Parish
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1125-1129
Alternate Fuels and Innovative Confinement Concept | doi.org/10.13182/FST89-A39844
Articles are hosted by Taylor and Francis Online.
A model is developed to describe the tritium and fissile fuel flow in a fusion-fission system which consists of a fusion (hybrid) reactor, tritium production (fission) reactors, and (fission) power reactors. The fusion reactor provides all of the fissile fuel for the tritium production and power reactors. Tritium production reactors assure that the system is self sufficient in tritium even if the fusion reactor is not self sufficient. Studies were performed to determine the changes in the cost of electricity from the system as the tritium breeding responsibility varies between the fusion reactor and the tritium production reactors. Allowance for system growth was accomplished with the use of a compound doubling time parameter. Results indicate that the cost of electricity from certain fusion-fission systems may be comparable to that from other advanced systems expected in the same era.