ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
N. A. Uckan
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1076-1081
Plasma Heating and Current Drive — II | doi.org/10.13182/FST89-A39835
Articles are hosted by Taylor and Francis Online.
The confinement capability of the INTOR plasma for achieving ignition and noninductively driven, Q > 5 steady-state operation has been assessed for various energy confinement scaling laws and current drive schemes by using a global power balance model. Plasma operation contours are used to illustrate the boundaries of the operating regimes in density-temperature (n-T) space. Results of the analysis indicate a very restricted capability (if any) for ignition and a limited flexibility in driven modes of operation in the INTOR (8-MA) design. Nearly a factor of two increase in plasma current (through stronger plasma shaping) could improve the feasibility of ignition in INTOR.