ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. Kobayashi, T. Shimizu, Y. Seki
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1008-1012
Safety And Environment — II | doi.org/10.13182/FST89-A39825
Articles are hosted by Taylor and Francis Online.
If a loss-of-coolant accident occurs in a fusion reactor, the temperature in the vacuum vessel will rise. If the decay heat is not removed, then the plasma vacuum boundary may melt. In this paper, the effects of the decay heat in a LOCA are analysed numerically based on the Fusion Experimental Reactor (FER). ... the fusion power: ∼ 460 MW. In the case of a loss-of-coolant accident with the plasma shut down, it is assumed that the decay heat is removed by the radiation of the divertor only. If the radiant effect is a quarter of the black radiation, the divertor plate will not melt, because the temperature rise is less than 150 K. Secondly, it is assumed that the decay heat is removed by the radiation between the outer shield and the heat shield. When the initial shield temperature is low and the amount of the shield is large, the temperature rise is negligible, because the heat capacity is large enough to absorb the heat. The effect of the natural convection outside of the cryostat is negligible to remove the heat.