ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Zimmermann, M.S. Kazimi, N.O. Siu, R.J. Thome
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 951-956
Magnet Engineering, Design and Experiments — I | doi.org/10.13182/FST89-A39816
Articles are hosted by Taylor and Francis Online.
Several fault scenarios for electrical failures in the Poloidal Field (PF) magnet system are investigated involving shorts and faults with constant applied voltage at the coil terminals. A simplified model of the Compact Ignition Tokamak (CIT) is used to examine the load conditions for the PF and the Toroidal Field (TF) coils resulting from these fault scenarios. It is concluded that shorts do not pose large risks for the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. However, the out-of-plane loads at the inner corner of the TF coils can increase substantially for a wide range of scenarios, and this effect can even be stronger depending on the terminal constraints on the internal PF coils.