ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Mahmoud Z. Youssef, Insoo Jun
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 887-892
ITER Nuclear Design | doi.org/10.13182/FST89-A39806
Articles are hosted by Taylor and Francis Online.
In the initial design of TIBER-II inboard (I/B) shield, multilayers of tungsten shield and coolant were deployed with a total thickness of 48 cm. It was thought during the design process to replace W by PCA. The motivations are: (1) accumulated activation level in the I/B shield at shutdown is larger in the W-shield in comparison to the PCA-shield, and (2) concerns regarding cost/fabrication. This design change required an I/B shield thickness of ∼58 cm to reach the same performance level of the 48 cm W-shield. In this paper a detailed comparison between the two types of shield is given regarding the accumulated radioactivity, biological hazard potential (BHP), and afterheat levels at shutdown and various times thereafter. In addition, a substantial part of the present work is devoted to studying the impact of the present neutron cross-section uncertainties in the prediction of the radiation damage parameters in the S/C magnet. In this regard, an extensive cross-section sensitivity/uncertainty analysis was performed to assess the required increase in the I/B shield thickness in both cases to account for these uncertainties. It was shown that the economic penalty of such an increase is 13–17 M$ in the W-shield case as opposed to 10–14 M$ in the case of the PCA-shield.