ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Laila A. El-Guebaly, Mohamed E. Sawan
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 881-886
ITER Nuclear Design | doi.org/10.13182/FST89-A39805
Articles are hosted by Taylor and Francis Online.
The shield design of ITER is required to meet both magnet protection requirements and safety-related criteria. Although the W provides excellent magnet protection, its high specific decay heat caused some concern in case of an accident. A trade study was carried out in which W is replaced by steel in the high neutron flux zones of the inboard shield and the sensitivity of the machine size, cost, and magnet damage to such change was determined. Satisfying the 1019 n/cm2 fast fluence limit for the magnet, the direct cost is essentially the same for the steel and W shields, although the steel shield is 0.1 m thicker. The 0.55 m thick inboard shield of ITER is configured in 3 main layers: a 0.05 m Be layer, followed by a 0.18 m steel layer, then a 0.18 m W layer. Five coolant channels, each 0.01 m wide, are properly distributed across the shield. About 0.1 m thick layer of aqueous Li salt solution at the back of the shield was found necessary to minimize the damage in the magnet. This design meets the neutronics, safety, and thermal hydraulics requirements and there appears to be no feasible problems associated with it.