ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Y. Gohar, C.C. Baker, H. Attaya, M. Billone, R.C. Clemmer, P.A. Finn, A. Hassanein, C.E. Johnson, S. Majumdar, R.F. Mattas, D.L. Smith, H. Stevens, D.K. Sze, L.R. Turner
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 864-870
ITER Nuclear Design | doi.org/10.13182/FST89-A39802
Articles are hosted by Taylor and Francis Online.
A water-cooled solid-breeder blanket concept was developed for ITER. The main function of this blanket is to produce the necessary tritium for the ITER operation. Several design features are incorporated in this blanket concept to increase its attractiveness. The main features are the following: a) a multilayer concept which reduces fabrication cost; b) a simple blanket configuration which results in reliability advantages; c) a very small breeder volume is employed to reduce the tritium inventory and the blanket cost; d) a high tritium breeding ratio eliminates the need for an outside tritium supply; e) a low-pressure system decreases the required steel fraction for structural purposes; f) a low-temperature operation reduces the swelling concerns for beryllium; and g) the small fractions of structure and breeder materials used in the blanket reduce the decay heat source. It is assumed that the blanket operation at commercial power reactor conditions can be sacrificed to achieve a high tritium breeding ratio with minimum additional research and development, and minimal impact on reactor design and operation. Operating temperature limits are enforced for each material to insure a satisfactory blanket performance. In fact, the design was iterated to maximize the tritium breeding ratio and satisfy these temperature limits. The other design constraint is to permit a large increase in the neutron wall loading without exceeding the temperature limits for the different blanket materials. The blanket concept contains 1.8 cm of Li2O and 22.5 cm of beryllium both with a 0.8 density factor. The water coolant is isolated from the breeder material by several zones which reduces the tritium buildup in the water by permeation, reduces the chance for water-breeder interaction, and permits the breeder to operate at high temperature with a low temperature coolant. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. The key features and design analyses of this blanket are summarized in this paper.a Work supported by the U.S. Department of Energy, Office of Fusion Energy.