ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. R. Raffray, M. A. Abdou, P. Chou, Z. Gorbis, M. Tillack, Y. Watanabe, A. Ying
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 858-863
ITER Nuclear Design | doi.org/10.13182/FST89-A39801
Articles are hosted by Taylor and Francis Online.
This paper summarizes the latest results of a design study of a helium-cooled solid breeder blanket for ITER. Attractive features of this design include the following : 1) There is a significant design margin since only part of the allowable solid breeder temperature window needs to be used. 2) There is an expanding data base available from solid breeder experiments carried out internationally. 3) The solid breeder can be designed to operate at high reactor-relevant temperature, while the helium is kept at moderate temperature and pressure for safety and reliability. In addition, since helium is a gas, it can be run so as to optimize the structure temperature and accommodate long term power variation without incurring any substantial pressure penalty. 4) The use of helium, an inert gas minimizing any chemical reaction and corrosion, in combination with a low activation solid breeder, is a safety advantage. An extensive list of the blanket operating parameters is provided and key factors are discussed.