ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Monya A. Lane
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 778-782
ICF Reactors and Technology | doi.org/10.13182/FST89-A39789
Articles are hosted by Taylor and Francis Online.
Target design, fabrication and handling are central to the design of a Laboratory Microfusion Facility (LMF). Both direct and indirect drive target designs are being considered. This paper will address the target issues for the LMF concept, for the case of direct drive targets. Current direct-drive designs call for uniform liquid DT layers to be contained in a low density hydrocarbon foam shell at 20–25°K, or uniform solid DT layers to be created on the interior of a solid shell at about 19°K. A conceptual plan for LMF target fabrication is presented which addresses many of the issues raised by this new generation of ICF targets. Since these targets will require a cryogenic environment until they are imploded, solutions to a number of problems including temperature stability, fill methods for various target designs, tritium supply, target transport, and target alignment must be integrated into a single cryogenic system which maintains the target over its lifetime. The simultaneous solution of all these issues will require a complex facility capable of integrating technologies ranging from foam chemistry to novel cryogenics. This paper outlines the requirements on such a facility as well as many solutions under consideration.