ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yoichi Watanabe, Mohamed A. Abdou, Mahmoud Z. Youssef
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 617-622
Design of an Engineering Test Reactor | doi.org/10.13182/FST89-A39766
Articles are hosted by Taylor and Francis Online.
The next fusion experimental reactor such as ITER requires tritium breeding because of the high tritium cost and its limited availability from non-fusion sources, in addition to demonstrating breeding capability of commercial D-T reactors. A tritium fuel cycle model was developed to compute the required tritium breeding ratio(TBR) by taking into account reactor down-time. The results show that TBR should be unity to achieve 3 MW * Year/m2 of neutron fluence in 10 years for a steady-state reactor with 600 MW fusion power and 25% system availability provided 5 kg of initial tritium supply. If the external tritium supply is increased to 20 kg, the required TBR is 0.9. The estimated TBR is very sensitive to the variation of the tritium burn-up fraction in plasma and the tritium residence time in the tritium processing system. For example, decreasing the burn-up fraction from 5% to 1% leads to a 25% increase in the required TBR. Thus these parameters must be carefully examined in future work.