ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
D. S. Darrow
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 201-206
Technical Paper | doi.org/10.13182/FST16-236
Articles are hosted by Taylor and Francis Online.
A scintillator-type fast ion loss detector (FILD) measures the gyroradius and pitch angle distribution of superthermal ions escaping from a magnetically confined fusion plasma at a single location. Described here is a technique for optimizing the angular orientation of such a detector in an axisymmetric tokamak geometry in order to intercept losses over useful and interesting ranges of pitch angle. The method consists of evaluating the detector acceptance as a function of the fast ion constants of motion, i.e., energy, canonical toroidal momentum, and magnetic moment. The detector acceptance can then be plotted in a plane of constant energy and compared with the relevant orbit class boundaries and fast ion source distributions. Knowledge of expected or interesting mechanisms of loss can further guide selection of the detector orientation. The example of a FILD for the National Spherical Torus Experiment-Upgrade (NSTX-U) is considered.