ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
V. Tkachenko, A. V. Ovcharov, M. B. Rozenkevich
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 207-214
Technical Paper | doi.org/10.13182/FST16-130
Articles are hosted by Taylor and Francis Online.
Vapor phase catalytic exchange is an important part of many hydrogen isotope separation processes. Some industrial hydrogen isotope separation processes are performed in a wide deuterium concentration range. The performance of catalysts in hydrogen-water vapor exchange reaction in the upper deuterium concentration limit is poorly investigated. The paper presents results of an investigation of catalytic activity of three catalyst types at the upper and lower limits of the deuterium concentration range. All catalyst experimental rate constants in protium-deuterium exchange demonstrated a tendency to increase with the growth of deuterium concentration. Experimental rate constants of catalysts in protium-tritium and deuterium-tritium exchange were found to remain constant. In this work the authors propose a method to be used for catalyst performance evaluation to obtain catalyst performance data for liquid phase catalytic exchange process models.