ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
V. Tkachenko, A. V. Ovcharov, M. B. Rozenkevich
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 207-214
Technical Paper | doi.org/10.13182/FST16-130
Articles are hosted by Taylor and Francis Online.
Vapor phase catalytic exchange is an important part of many hydrogen isotope separation processes. Some industrial hydrogen isotope separation processes are performed in a wide deuterium concentration range. The performance of catalysts in hydrogen-water vapor exchange reaction in the upper deuterium concentration limit is poorly investigated. The paper presents results of an investigation of catalytic activity of three catalyst types at the upper and lower limits of the deuterium concentration range. All catalyst experimental rate constants in protium-deuterium exchange demonstrated a tendency to increase with the growth of deuterium concentration. Experimental rate constants of catalysts in protium-tritium and deuterium-tritium exchange were found to remain constant. In this work the authors propose a method to be used for catalyst performance evaluation to obtain catalyst performance data for liquid phase catalytic exchange process models.