ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Guang-Hong Lu, Long Cheng, Kameel Arshad, Yue Yuan, Jun Wang, Shaoyang Qin, Ying Zhang, Kaigui Zhu, Guang-Nan Luo, Haishan Zhou, Bo Li, Jiefeng Wu, Bo Wang
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 177-186
Technical Paper | doi.org/10.13182/FST16-115
Articles are hosted by Taylor and Francis Online.
The linear plasma device Simulator for Tokamak Edge Plasma (STEP) has been constructed at Beihang University, Beijing, to study plasma-material interactions (PMIs) for fusion reactor applications. The device can produce versatile low-energy and high flux plasma in laboratory experiments and is highly cost-effective to replicate the fusion-relevant plasma environment to study PMI processes. The attractive feature of the device is its compact design with a main body dimension of 1.5 × 1.5 × 0.8 m3 including the plasma source, vacuum chamber, magnetic coils, and diagnostics. A longitudinal magnetic field of up to 0.26 T is used to confine the plasma onto the target in an ~1-m-long vacuum tube. It can produce a steady-state plasma of low impinging ion energy of <100 eV, ion flux up to 1022 m−2 · s−1, and fluence of >1026 m−2 per exposure. Various plasma species such as hydrogen, deuterium, helium, and nitrogen can be produced to manipulate PMI processes for different target grades. The STEP device provides an experimental platform to improve the understanding of PMIs, validate computational simulation results, and build a database of fusion material performance and lifetime.