ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Sophie Blondel, Karl D. Hammond, Lin Hu, Dimitrios Maroudas, Brian D. Wirth
Fusion Science and Technology | Volume 71 | Number 1 | January 2017 | Pages 22-35
Technical Paper | doi.org/10.13182/FST16-112
Articles are hosted by Taylor and Francis Online.
We provide a description of the dependence on surface crystallographic orientation and temperature of the segregation of helium implanted with energies consistent with low-energy plasma exposure to tungsten surfaces. Here, we describe multiscale modeling results based on a hierarchical approach to scale bridging that incorporates atomistic studies based on a reliable interatomic potential to parameterize a spatially dependent drift-diffusion-reaction cluster-dynamics code. An extensive set of molecular dynamics (MD) simulations has been performed at 933 K and/or 1200 K to determine the probabilities of desorption and modified trap mutation that occurs as small, mobile Hen (1 ≤ n ≤ 7) clusters diffuse from the near-surface region toward surfaces of varying crystallographic orientation due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. These near-surface cluster dynamics have significant effects on the surface morphology, the near-surface defect structures, and the amount of helium retained in the material upon plasma exposure, for which we have developed an extensive MD database of cumulative evolution during high-flux helium implantation at 933 K, which we compare to our properly parameterized cluster-dynamics model. This validated model is then used to evaluate the effects of temperature on helium retention and subsurface helium clustering.