ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Zhangcan Yang, Sophie Blondel, Karl D. Hammond, Brian D. Wirth
Fusion Science and Technology | Volume 71 | Number 1 | January 2017 | Pages 60-74
Technical Paper | doi.org/10.13182/FST16-111
Articles are hosted by Taylor and Francis Online.
The object kinetic Monte Carlo code Kinetic Simulations Of Microstructure Evolution (KSOME) was used to study the subsurface helium clustering behavior in tungsten as a function of temperature, helium implantation rate, and vacancy concentration. The simulations evaluated helium implantation fluxes from 1022 to 1026 m−2 · s−1 at temperatures from 473 to 1473 K for 100-eV helium ions implanted below tungsten surfaces and for vacancy concentrations between 1 and 50 parts per million. Such vacancy concentrations far exceed thermodynamic equilibrium values but are consistent with supersaturated concentrations expected during concurrent, or preexisting, neutron irradiation. The thermodynamics and kinetic parameters to describe helium diffusion and clustering are input to KSOME based on values obtained from atomistic simulation results. These kinetic Monte Carlo results clearly delineate two different regimes of helium cluster nucleation, one dominated by helium self-trapping at high implantation rates and lower temperatures and one where helium–vacancy trapping dominates the helium cluster nucleation at lower implantation rates and higher temperatures. The transition between these regimes has been mapped as a function of implantation rate, temperature, and vacancy concentration and can provide guidance to understand the conditions under which neutron irradiation effects may contribute to subsurface gas nucleation in tungsten plasma-facing components.