ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Lin Hu, Karl D. Hammond, Brian D. Wirth, Dimitrios Maroudas
Fusion Science and Technology | Volume 71 | Number 1 | January 2017 | Pages 36-51
Technical Paper | doi.org/10.13182/FST16-105
Articles are hosted by Taylor and Francis Online.
We report the results of a systematic atomic-scale analysis of small helium cluster dynamics near a Σ3<111>{121} symmetric tilt grain boundary (GB) in tungsten based on molecular-dynamics simulations according to a reliable interatomic interaction potential. We find that small, mobile helium clusters (Hen, 1 ≤ n ≤ 7) in the near-GB region are attracted to the GB due to an elastic cluster-GB interaction force. Moreover, as the clusters drift toward the GB, cluster trap mutation (TM) reactions in the near-GB region are activated at rates much higher than those in the bulk of the material’s grains. This near-GB cluster dynamics has significant effects on the near-GB defect structures and the amount of helium retained in the material upon plasma exposure. Each TM reaction generates a tungsten vacancy, which traps helium by forming an immobile helium-vacancy complex, and an interstitial tungsten atom in the form of an extended tungsten interstitial complex on the GB. This interstitial configuration is characterized by mobility that depends on the location where the TM reaction occurs: It is immobile when the vacancy produced by the TM reaction is located a few lattice planes away from the GB plane and highly mobile along a specific direction when the produced vacancy is located on the GB. The latter mechanism initiates a potentially fast migration path for W atoms along the GB toward a free surface, which may influence significantly the surface morphology of plasma-exposed tungsten.