ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Karl D. Hammond, Francesco Ferroni, Brian D. Wirth
Fusion Science and Technology | Volume 71 | Number 1 | January 2017 | Pages 7-21
Technical Paper | doi.org/10.13182/FST16-110
Articles are hosted by Taylor and Francis Online.
We analyze the effect of subsurface prismatic dislocation loops on the surface morphology and helium clustering behavior of plasma-facing tungsten through the use of molecular dynamics simulations that are moderately large in scale, consisting of approximately 830 000 atoms, and extend to times on the order of 1 μs. This approach eliminates some finite-size effects common in smaller simulations and reduces the flux to~5.5 × 1026 m−2 s−1, including ions that reflect back into the plasma—this flux is a factor of ~15 lower than is typically used in smaller simulations. These results indicate that prismatic loops with radii of ~3 nm that are centered 10 nm below the surface with Burgers vectors parallel to the surface cause helium atom clusters to accumulate at the edge of the dislocation core relatively quickly—within 100 to 150 ns of the onset of plasma exposure. Subsequent growth of these clusters, however, is relatively minimal even out to 1 μs or more. This is partially explained by the relatively high helium implantation flux, which causes bubbles to accumulate 0 to 7 nm below the surface and block the region of the metal containing the dislocation, but this is only part of the explanation. Another effect results from the strain field around the loop itself. The compressive regions along the direction of the Burgers vector repel helium, but the tensile region initially attracts helium and traps it. However, we believe that the attractive tensile stress region is effectively shielded by the formation of helium clusters on and above it, and these bubbles subsequently experience relatively slow growth.