ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Kei Kodera, Yuto Takeuchi, Yasushi Yamamoto, Hiroshi Yamada
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 554-558
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST03-A396
Articles are hosted by Taylor and Francis Online.
For the purpose of making use a torus type magnetic confinement device as a high current electron source by extracting runaway electrons, we investigated magnetic fields' configuration and calculated electron orbits by numerical simulation. Extraction coils which generate field to lead electrons to outside of the device, also strongly disturbed magnetic field in partly installed case. We propose new cancellation coil setups. The numerical calculation shows influence of extraction coils are reduced, and as a results, the maximum radius of magnetic surface is almost the same as the case of setting up extraction coils all around device.We also traced the electron acceleration and extraction orbits from low energy in confinement area. Through that, we estimated the extraction ratio of the runaway electrons and their averaged energy. The results show that 70% of the runaway electrons can be extracted and the averaged energy of those electrons is 4 keV in case of all direction extraction.