ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. W. Weidner, G. L. Kulcinski, J. F. Santarius, R. P. Ashley, G. Piefer, B. Cipiti, R. Radel, S. Krupakar Murali
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 539-543
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST03-8
Articles are hosted by Taylor and Francis Online.
This paper describes a proof of principle experiment to produce 13N using an inertial electrostatic confinement (IEC) fusion device. This radioisotope is often used in positron emission tomography scans to image the heart. The 10-minute half-life of 13N limits its use to those areas and clinics that possess an accelerator. A portable IEC device could be brought to remote locations, however, and produce short-lived PET isotopes on-site. Using the 14.7 MeV protons produced from the D-3He fuel cycle, the University of Wisconsin IEC device was used to produce approximately 4 - 8 Bq of 13N during two separate experiments.