ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
B. B. Cipiti, G. L. Kulcinski
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 534-538
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST03-A392
Articles are hosted by Taylor and Francis Online.
The high-energy 14.7 MeV protons generated from the D-3He fusion reaction can be used to produce medical radioisotopes. Steady-state D-3He operation is possible using Inertial Electrostatic Confinement (IEC); however, the location of the reactions must be known to use them effectively for isotope production. In the University of Wisconsin IEC Device, it has been found that as much as 2/3 of the total D-3He reaction rate can be due to embedded fusion reactions, reactions occurring within the cathode due to ion implantation. Therefore, the cathode surface sees a large, high-energy proton flux. Using a solid molybdenum cathode, and taking advantage of the embedded reactions, about 1 nCi of the medical isotope 94mTc was created via 94Mo(p,n)94mTc in a proof of principle experiment. This represents the first time the IEC concept has been used to produce a radioisotope using D-3He fusion.