ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. Yoshikawa, H. Toku, K. Masuda, T. Mizutani, A. Nagafuchi, M. Imoto, T. Takamatsu, K. Nagasaki
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 529-533
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST03-A391
Articles are hosted by Taylor and Francis Online.
A magnetron discharge was adopted in the inertial-electrostatic confinement (IEC) fusion device for drastic improvement of fusion reaction rate. With this discharge in the vicinity of the vacuum chamber, a substantial number of ions produced there are expected to have almost full energy corresponding to the applied voltage to the transparent IEC cathode under relatively low pressures compared with the conventional glow discharge. The magnetron discharge is found to occur even for the pressure of 0.07 mTorr (H2) in the present configuration of the experiment, compared with 5 mTorr in the glow discharge.