ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Gen Chen, Yanping Zhao, Yuzhou Mao, Yuan Shuai, Xinjun Zhang, Chengming Qing
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 144-149
Technical Paper | doi.org/10.13182/FST15-228
Articles are hosted by Taylor and Francis Online.
Ion cyclotron resonance frequency (ICRF) heating is one of the traditional auxiliary heating methods adopted in the Experimental Advanced Superconducting Tokamak (EAST). The radio-frequency (rf) source consisting of eight transmitters has been fabricated since 2012 and has a working frequency of 24 to 70 MHz. It has a maximum total power of ~12 MW. However, the power injection into plasma has been restricted by the variable antenna load, which is sensitive to the scrape-off-layer boundary condition and the gradient distribution of plasma density. Triple liquid stub tuners, which have been employed for ICRF impedance matching, cannot cope with such rapid variations because of the low response speed. In previous research, a 300-kW ferrite tuner (FT) was developed and tested, but it was not good enough to meet the requirements of real-time impedance matching. Research on a high-power fast-response FT with maximum power of 1.5 MW was carried out to achieve real-time tuning to trace the load variations of the antenna. The design parameters of the FT were determined according to the experimental data of the antenna load in EAST. The ferrite material, rf circuit, and magnet system of the FT were discussed to satisfy the design goals. The test results showed good performance of response time, differential phase shift, and insertion loss, which was extremely significant for the high-power, real-time operation of an impedance matching network based on FTs.