ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
M. Rozenkevich, Yu. Pak, S. Marunich, A. Bukin, A. Ivanova, A. Perevezentsev, L. Lepetit
Fusion Science and Technology | Volume 70 | Number 3 | November 2016 | Pages 435-447
Technical Paper | doi.org/10.13182/FST15-153
Articles are hosted by Taylor and Francis Online.
This paper examines the main features of the gas purification process from tritiated water vapor at any relative humidity using water phase isotope exchange. The experimentally evaluated overall mass transfer coefficient (KOG) for structured CY black packing manufactured by SULZER Chemtech (Switzerland) was used as the main performance parameter of the method. The obtained KOG dependencies on various process parameters (temperature, water and gas flows, and their ratio) demonstrate that column operation in adiabatic mode is preferable for the detritiation of gas at any relative humidity. Under comparable conditions, KOG does not depend on the column diameter in the investigated range. A comparison of the main characteristics of the developed technology with those of the technology based on water vapor adsorption on molecular sieves shows clear advantages in terms of energy, operating cost, and detritiation degree with the same amount of tritiated water produced as a radioactive waste.