ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Zhilin Chen, Masao Matsuyama, Shinsuke Abe, Shuming Peng
Fusion Science and Technology | Volume 70 | Number 3 | November 2016 | Pages 461-467
Technical Note | doi.org/10.13182/FST15-151
Articles are hosted by Taylor and Francis Online.
Beta-induced X-ray spectrometry (BIXS) is a nondestructive method to detect tritium both on the surface and in the bulk of materials. The effects of internal bremsstrahlung (IB) from the beta decay of tritium on tritium profile reconstruction have been theoretically studied by numerical simulation based on Matlab code. Three kinds of samples, two polymers [(T-C4H6O2)n, Zeff = 6.4, homogeneous and heterogeneous] and one zirconium, with different tritium depth profiles were used in the calculations, and two of them were confirmed by experiments. The results indicate that the intensity of IB is comparable with external bremsstrahlung (EB) for low-Z materials, and the intensity of IB decreases a little faster than that of EB for the same material. Neglecting IB would lead to as much as 12% counts loss in tritium profile reconstruction for a polymer sample, and it is expected to be more serious for lower-Z materials such as beryllium and carbon fiber composites. The results also show that for the same material, the influence of IB depends on the depth profile of tritium in the sample.