ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Zhilin Chen, Masao Matsuyama, Shinsuke Abe, Shuming Peng
Fusion Science and Technology | Volume 70 | Number 3 | November 2016 | Pages 461-467
Technical Note | doi.org/10.13182/FST15-151
Articles are hosted by Taylor and Francis Online.
Beta-induced X-ray spectrometry (BIXS) is a nondestructive method to detect tritium both on the surface and in the bulk of materials. The effects of internal bremsstrahlung (IB) from the beta decay of tritium on tritium profile reconstruction have been theoretically studied by numerical simulation based on Matlab code. Three kinds of samples, two polymers [(T-C4H6O2)n, Zeff = 6.4, homogeneous and heterogeneous] and one zirconium, with different tritium depth profiles were used in the calculations, and two of them were confirmed by experiments. The results indicate that the intensity of IB is comparable with external bremsstrahlung (EB) for low-Z materials, and the intensity of IB decreases a little faster than that of EB for the same material. Neglecting IB would lead to as much as 12% counts loss in tritium profile reconstruction for a polymer sample, and it is expected to be more serious for lower-Z materials such as beryllium and carbon fiber composites. The results also show that for the same material, the influence of IB depends on the depth profile of tritium in the sample.