ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
R. D. Boyd, A. M. May, P. Cofie, R. Martin
Fusion Science and Technology | Volume 70 | Number 3 | November 2016 | Pages 448-460
Technical Paper | doi.org/10.13182/FST16-102
Articles are hosted by Taylor and Francis Online.
In order to accommodate high thermal loading of single-side-heated (SSH) components, robust thermal management and high-heat-flux-removal approaches are essential to prevent thermal instability, thermal runaway, or a thermal spiral toward component failure. This paper presents multidimensional steady-state heat transfer measurements for a high-strength-copper SSH monoblock (heat sink) coolant flow channel with a helical wire insert (HI) and thermally developing internal laminar and turbulent water (coolant) flow. In the present case, the term “monoblock” refers to a solid parallelepiped with a central coolant flow channel along the axial centerline. In addition to producing local two-dimensional (axial and circumferential) flow boiling curves, multidimensional monoblock wall temperature distribution comparisons were made between flow channels with and without a HI. Further, flow boiling curves were measured up to ~4.0 MW/m2 at the inside flow channel wall. For the same inside flow channel temperature, the HI enhanced (1) the incident heat flux by >70% when compared with the flow channel without the insert and (2) the inside flow channel wall heat flux by up to a factor of 5 near the monoblock heated side and at all axial locations. These results can be used for validation of computational fluid dynamics codes.