ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
I. Geoffray, J. Andre, R. Bourdenet, J. Schunck, C. Chicanne, M. Theobald
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 244-253
Technical Paper | doi.org/10.13182/FST15-221
Articles are hosted by Taylor and Francis Online.
Hydrodynamics growth experiments involve rippled ablator samples (CHx, Ge:CH, or Si:CH). The rippled surface features a microscale mathematical shape (sinusoidal functions are widely used). Nevertheless, experiments have progressed with time, and samples evolved gradually from two-dimensional (planar samples) to three-dimensional geometries (capsules).
This paper presents various processes that have been developed to fulfill such specifications. Various technologies, based on laser means (excimer laser, Ti:sapphire laser) or mechanical ultraprecision means, have been successfully applied to ripples machining (planar samples or capsules).
The main results are discussed showing the ability and accuracy of each technology as well as their main limitations. We focus especially on our latest results (i.e., rippled or grooved capsules).