ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
F. Durut, R. Botrel, E. Brun, S. Le Tacon, C. Chicanne, O. Vincent-Viry, M. Theobald, V. Vignal
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 341-350
Technical Paper | doi.org/10.13182/FST15-230
Articles are hosted by Taylor and Francis Online.
Pure gold-copper alloys are known to be difficult to electrodeposit because of a strong variation in composition after a few microns have been deposited. Commissariat à l’Energie Atomique (CEA) studied the phenomenon and showed that the decrease in gold’s content is accompanied by an evolution of the microstructure that could be attributed to the free cyanide released near the cathode. During electrolysis, free cyanides provoke a decrease of the copper overpotential (until copper reduction is stopped) and promote the formation of Cu(CN)43− that conduct to an instantaneous three-dimensional nucleation of copper. This phenomenological model well explains why the growth mechanism changes and why only gold is deposited for thick deposits. On the basis of this model, CEA has developed a specific process using ultrasonic waves in order to remove the free cyanides from the cathode. This process allows CEA to perform thick gold-copper deposits with a constant concentration in copper through all the thickness. By controlling the applied potential, different thick alloys with a concentration of copper between 0 wt% up to 40 wt% can be deposited.