ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
L. J. Jiang, J. H. Campbell, Y. F. Lu, T. Bernat, N. Petta
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 295-309
Technical Paper | doi.org/10.13182/FST15-222
Articles are hosted by Taylor and Francis Online.
Two-photon polymerization (2PP) offers an attractive option for direct writing micron- to millimeter-sized laser target components that support high-energy-density plasma physics research. 2PP was used to deterministically print a number of common targetlike structures including tubes, spatially periodic Rayleigh-Taylor–like surfaces, and low-density foams. The structures were printed using commercially available acrylic photoresins. The elemental compositions are reported for comparison with other polymers used for making target components. A number of foamlike structures ranging in size from tens to hundreds of microns and varying in density from 600 to 60 mg/cm3 were readily printed in times ranging from several seconds to a few hours depending on the size. In addition, direct printing was demonstrated to fabricate graded-density foam comprising 12 individual layers with a vertical density gradient of 600 to 80 mg/cm3. Control of shrinkage and deformation during development and subsequent drying remains a challenge for certain structures and a focus of ongoing research.