ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. Andre, R. Botrel, J. Schunck, A. Pinay, C. Chicanne, M. Theobald
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 237-243
Technical Paper | doi.org/10.13182/FST15-241
Articles are hosted by Taylor and Francis Online.
To produce the laser targets needed for laser plasma experiments, the CEA target department uses different mechanical machining techniques and develops methods that are consistent with the target requirements in terms of quality, timing, and cost.
Combining these aims involves several challenges. First, laser experiments need a wide range of target geometries with common points: reduced dimensions (millimetric range) and thin walls (micrometric range), as well as very strict dimensional and geometric specifications. According to these requirements, the target specifications demand the machining of different kinds of materials from metals (aluminum, copper, and gold) to polymers and low-density foams.
In this context, the versatility of the machining processes is the key issue. These challenges necessitate the development and upgrading of machining techniques and methods as well as optimizing the engineering design to use the full potential of these techniques. In this presentation, three main machining processes are developed and illustrated: adaptations of machine tools for planar targets (by the flycutting method) and for machining complex shapes (combined milling and turning), the development of the original process to produce a baffle hohlraum, and the parametric optimizations of machining tantalum aerogel.