ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E. M. Giraldez, M. L. Hoppe Jr., D. E. Hoover, A. Q. L. Nguyen, N. G. Rice, A. M. Garcia, H. Huang, M. P. Mauldin, M. P. Farrell, A. Nikroo, V. Smalyuk
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 258-264
Technical Paper | doi.org/10.13182/FST15-234
Articles are hosted by Taylor and Francis Online.
Hydrodynamic instability growth and its effects on capsule implosion performance are being studied at the National Ignition Facility (NIF). Experimental results have shown that low-mode instabilities are the primary culprit for yield degradation. Ignition-type capsules with machined two-dimensional (2-D) sinusoidal defects were used to measure low-mode hydrodynamic instability growth in the acceleration phase of the capsule implosion. The capsules were imploded using ignition-relevant laser pulses and the ablation-front modulation growth was measured using X-ray radiography. The experimentally measured growth was in good agreement with simulations.
Fabrication of the preimposed 2-D sinusoidal defects of different wavelengths and amplitudes on the surfaces of ignition-type capsules was accomplished by General Atomics leading up to and during the Hydro-Growth Radiography campaign for the hydrodynamic instability growth experiments conducted at NIF between 2013 and 2014. The 2-D sinusoidal defects were imposed on ignition-type capsules by machining the surface of the capsule. The fabrication trials showed that there are six parameters that can affect the ripple form, wall thickness, and the extent of the pattern about the equator of the capsule: (1) knowing accurately the outer diameter of the capsule, (2) the roundness of the capsule (modal content), (3) the cutting tool alignment with respect to the surface of the capsule, (4) the radius and form of the cutting tool, (5) tool touch-off, and (6) the runout of the capsule center with respect to the axis of rotation of the lathe’s spindle. In this paper, we will describe the importance of these parameters on the machining of uniform 2-D sinusoidal defects.