ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
W. A. Houlberg
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 518-521
Technical Paper | Fusion Energy - Plasma Engineering, Heating, and Current Drive | doi.org/10.13182/FST03-A389
Articles are hosted by Taylor and Francis Online.
The transport and net loss of cyclotron radiation for burning plasmas represented by the ITER, FIRE and IGNITOR designs are assessed using the CYTRAN radiation transport code. Although cyclotron radiation might be expected to be a bigger issue in the higher field devices (FIRE and IGNITOR), the reference operating conditions in those devices are at lower temperatures so that the relative importance is nearly constant for all three. At the reference operating conditions for each of these devices, the net energy loss from cyclotron radiation is about 10% of the alpha power, and the axial loss is typically about 15% of the local alpha power density. If the same fusion power is generated at higher temperature and lower density than the reference operating points (as may be the case in advanced confinement modes), both the net and axial loss fractions strongly increase and are more competitive with other energy transport processes. The increase is much stronger for the high field devices where the axial loss can approach the local alpha energy production rate for T(0) ~ 30 keV. However, if the temperature increases at constant density (as in a thermal excursion), cyclotron radiation loss remains an almost constant fraction of the alpha production rate. This implies that it will not make a significant contribution to thermal stabilization. However, these and other calculations of cyclotron radiation transport are sensitive to assumptions of reflection, plasma geometry and profile shapes. Therefore, the effect of cyclotron radiation on operating conditions and burn dynamics will undoubtedly be a generic issue that any burning plasma will have to address.