ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
N. D. Viza, M. H. Romanofsky, M. J. Moynihan, D. R. Harding
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 219-225
Technical Paper | doi.org/10.13182/FST15-216
Articles are hosted by Taylor and Francis Online.
A T-junction microfluidic device consists of one microchannel connected to a second microchannel at 90 deg. The size of the emulsions that form at the junction depends on the dimensions of the channel and the properties of the immiscible fluids flowing through them. Micron-sized emulsions are easily formed in small channels where interfacial tension forces dominate, but it is more difficult to form larger emulsions that could be used to produce inertial confinement fusion (ICF) targets. The concept and feasibility of using this method to mass-produce millimeter-sized ICF targets are presented.
The experimental data presented here will demonstrate the competing contribution of the fluids’ surface tension and fluid velocity to forming and controlling the volume of millimeter-sized oil-in-water emulsions. The oil-in-water emulsion is the first step in the process of making resorcinol-formaldehyde foam targets (1 to 4 mm in diameter). Adding a surfactant to the aqueous phase lowered the aqueous-solid surface energy, which allowed for greater flexibility in manufacturing T-junctions. Equally important, although it also lowered the interfacial surface tension, the emulsions remained encapsulated by adjusting the flow velocities. The effect of the surfactant on the completing shear, viscous, and surface energy forces involved in the microencapsulation mechanism is described. Oil-in-water emulsions, 1.32 to 8.32 mm in diameter, and water-in-oil emulsions, 1.10 to 3.2 mm diameter, were formed. A protocol is presented for tuning the droplet diameter to a desired value based on the capillary number and the relative fluid velocities ratio (which must be below 0.5). A linear regression showed the relationship between the fluid velocities and desired droplet diameter. Control of the outer diameter was demonstrated over a 1.75- to 4.14-mm-diameter range with a 426- to 900-μm wall thickness.